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THERMAL STRESSES IN A THICK PLATEt

C. W. LEE

Department of Engineering Mechanics
The University of Tennessee

Knoxville. Tennessee

Abstract-A three-dimensional series solution is obtained for elastic plates subjected to general temperature
distribution. The solution satisfies the field equations of linear thermoelasticity and the boundary condition of
vanishing stresses on the fiat surfaces, but in general not the edge conditions. In the series solution the first term
represents the classical thin plate theory and the subsequent correcting terms involve successively higher derivatives
of the temperature function. General terms of the series solution are derived for the case of linear temperature
distribution T(x, y, z) = To(x. y)+zT1(x. y).

INTRODUCTION

THERMAL stresses in thin plates are generally considered to be well established [1-3], on
the other hand investigations pertaining to thick plates appear to be very limited. Sokol
nikoff [4] obtained an explicit solution for the stress component 'zz' together with 'xz

and 'yz expressed in terms of 'zz; the other three stress components 'xx' 'yy, and 'Xy were
ignored in the paper. The derivation was rigorous but lengthy, and the final results were
not in a convenient form for direct application. Gatewood [5] extended the work of [4] to
include calculations of 'xx' 'yy, 'Xy, also expressed in terms of 'zzo Some applications and
numerical results were given.

In the present paper a series solution, in the same spirit of [4, 5], is obtained by a different
method of approach. The results reached for all stress components are expressed explicitly
in terms of the prescribed temperature load. The temperature distribution is assumed to be
expressible in the form

N

T(x, y, z) = L zk7k(x, y).
k~O

(1)

The solution satisfies the field equations of linear thermoelasticity and the boundary
condition of vanishing stresses on the flat surfaces. Accommodations are provided for hand
ling the edge conditions in each individual problem.

In the series solution the first term represents the classical thin plate theory and the
subsequent correcting terms involve successively higher derivatives of the temperature
function. General terms for the stresses are derived for the case of linear temperature
distribution

T(x, y, z) = To(x, y)+zTt(x, y).

The displacements are determined as usual from the stresses.

t This research was supported by the National Science Foundation, Grant GK-723.
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The same type of approach was first used by Boley [6J for the thermoelastic solution of
beams. Furthermore, it can be shown that the present plate solution may be reduced, under
appropriate conditions, to the corresponding beam solution [6].

DERIVATION

The governing field equations to be satisfied by the series solution are [I, 3J

'ij.j = 0

Vi'ij+i-~ vS'ij = -l~~O ~:bijviT+ T,ij)

where

(3)

(4)

(5)

The usual rules for index notation apply. The boundary conditions to be satisfied by the
solution are

z = ±c: (6)

The stress components given by the classical thin plate theory are [1-3J

'xx = Eet{ - ¢,yy+ 1~ vz(l/J,xx + vl/J,yy- M T)+ 1~ v(NT+zMT- Tl}

_ Eet { 1 2 ,2 2 )}'xz - -- -1{z -( )(V l/J'x-MT,x
I-v

(7)

with 'yy and 'yz to be obtained from 'xx and 'xz, respectively, by interchanging x and y.
In equations (7) the functions ¢(x, y) and l/J(x, y) are determined from

(8)

and with NT and MT defined by

I f"NT(x,y) = Tdz
2c _"

3 f"M T(X, y) = -3 Tz dz.
2c _"

A comma in equations (7) indicates partial differentiation.

(9)
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It can be readily checked that the stress components given in equations (7) do not
satisfy completely all equations (3) and (6). These expressions (7) will be taken as first
terms of the series solution, to be designated as { }o terms. The next terms { }1 are derived
by assuming appropriate expressions for each stress components with unknown coefficients,
which are determined by using equations (3) and (6); in the calculation derivatives of NT
and M T higher than the third order are neglected. The rest of the terms are derived by
repeating the procedure, and in deriving terms { }n the derivatives of NT and M T higher
than the (2n + l)th order are neglected. It may be mentioned that the same method of
approach have been used in the earlier papers [7,8] for isothermal case.

Once the stress components are known, the displacement components may be
determined through the relations

1
eij = E[(I+v)r ij-Vl)ijS]+t5ijaT

e·· = li2
1 u· .+u· .).I) 2\ 1,1 ),1

RESULTS

(10)

(a) Temperature distribution

The temperature distribution T(x, y, z) is assumed to have the form of equation (1).
Substitution of (1) into (9) results

C
2 c i

NT = To+)T2 + ... +i+l 1;+ ... (i = even)

M - 7' 3 2 3 '-1 .
T - 11 +SC T3 +··· +j+2cJ 1]+ ... {j = odd).

The function T(x, y, z) may be rearranged as

where

(11)

(12)

(13)

with i = even andj = odd integers only. It is obvious that in the case oflinear temperature
distribution (2), we have

(14)

and equation (12) is identical to equation (2).
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(b) Formulas for the part T Nr+zMr
The series solution for stress components are obtained as follows.

( ) (
3 )-}2 2- v 3 Z 1 v 2+V t/J,XY -~6-z +Mr,xy 6+10(' z . I

In the above equations </J and 1/1 are determined from equations (8) subjected to prescribed
edge conditions.
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The general terms { }n for the stress components have the form

I-v . ~ {v2(n-1)( N + b N ) 2m 2(n-m)--rxx ' £.., amn T,xx V mn T,yy C Z
Eex m=O

+v2(n-1)(d M +ve M )C2mZ2n-2m+1}
mn T,xx mn T,YY n

1- v n
--r ." {v2(n-1)(h N )C2mZ2(n-m)+v2(n-1)(i M )C2mZ2n-Zm+1}
E

xy' £.., mn T,xy mn T,xy n
ex m=O

1 V {n+ 1 n+ 1 }-=-r . "VZn(J' N )CZmZ2n-Zm+1+" V 2n(k M )C2mZZ(n-m+1)
E

xz· L. mn T,x L... mn T,x .
ex m=O m=O n

609

(16)

The following formulas give the numerical coefficients for the (n+ l)th term as functions
of the corresponding coefficients of the nth term. The first group of formulas hold for
m = 0, 1, ... , n:

1 [amn + vbmn +1mn]
am(n+ 1) = amn +

2(n-m+l)(2n-2m+l) l+v

bm(n+ 1) =
bmn

2(n-m+ 1)(2n- 2m+ 1)

1m(n+1) =
jmn

2(n-m+ 1)

hm(n+ 1) =
1 [ h amn + vbmn +1mn]

- 2(n-m+ 1)(2n-2m+ 1) mn+ 1+ V

jm(n+1) =
am(n+l)

2n-2m+3

1 [d dmn + vemn + gmnJ
(17)

dm(n+l) = 2(n-m+l)(2n-2m+3) mn+ l+v

em(n+l) =
emn

2(n-m+ 1)(2n-2m+ 3)

gm(n+l) =
kmn

2n-2m+3

im(n+ 1) = 1 [- dmn + vemn +gm" ]
2(n-m+ 1)(2n-2m+3) lmn+ 1+v

km(,,+l) = d",(n+ 1)

2(n-m+2f
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For m = n +1 and m = n + 2, the following formulas must be used:

J;n+ l){n+ 1) = - I fm(n+ 11
m=O

,
i(n+l)(n+l) = - L jm(n+l)

m=O

a tn +l)(n+l) = -j(n+l){n+l1

b(n+ 1)(n+ 1) = .I;n+ I)(n+ u- j(n+ 1)(n+ l}

h(n+ IHn+ 1) = -j(n+ I)(n+ II - vb(n+ I)(n+ I)

n

g(n+ 1)(n+ I) = - L gm(n+ I)
m=O

n 3(11 m+ 2\
k(n+l)(n+O = - m~o2n 2m+S m(n+l)

n+1

k(n+Z)(n+l) = - L km(n+l)
m=O

dIn + Il(n + 1) = - 2k(n + I)(n + l)

e(n+IHn+l) = g(n+l)(u+l}-2k(n+l)(n+l1

i(n+ll(n+l) = -vt:'(n+1)(n+II- 2k(,+I)(n+I)'

The series solution for displacement components are found as follows:

1 v
-----Ux = (l-v){(l+v)(¢'x+ zljJ,x)+P(x, vno
~ .

(181

(191

The formula for uy may be obtained from Ux by interchanging x and y, except that the
function P(x, y) in terms -( lois changed to Q(x, y). P and Q are the real and imaginary



Thermal stresses in a thick plate

parts of an analytic function of complex variable,

fez) = P+iQ

with z = x+iy, and

BP oQ 2- = -- = NT-V <f>.ax oy

611

(20)

(21)

(22)

(c) Formulasfor the term T = [Zi_(Ci/i+ 1)]1;

The series solution of stress components for this typical temperature term, with
i = 2, 4, 6, . , , , are found to be

(i+l)(l v) .. { [z;+Z C
i
Z

2 i(i+5) . ]
Erx 'xx = 1;{-(i+l)zl+c

1

}o+ 1;.xx i+2-T+6(i+2)(i+3)c' +
2

[
i i+2J} {2 [ Zi+4 C

i
Z

4

+ v1;,yy - 3(i + 3{ 1 + V T;,xx (i + 2)(i + 3)(i + 4) + 24

i(i-1) Ci + 2Z 2 i(13i
z

+96i+131) Ci+4J
+ 12(i+2)(i+3) 360(i+3)(i+4)(i+5)

v [ i i(7i
2

+69i+164) 1'+4J}+-V2 7; _c i + 2z2 +
6 I,Yy i+3 15(i+3)(i+4)(i+5)C 2'"

(i+l)(l v) { Zi+2 eizZ i .}
~~_.., = {O}o+V2 7; __+ ~_e'+2

Erx zz I i+2 2 2(i+2) 1

{

i+4 i 4 '(' 5)+V4 7; Z cz Jt+ H2 Z

i (i+2)(i+3)(i+4) 24 + 12(i+2)(i+3{ z

i(i+ 7) i+4}

24(i+ 3)(i+4{ 2+'"

(i+l)(l-v) {O} . {Zi+2 dz
2 if i+5 2VJ '+2}

ErJ. Txy = o+Ti,XY i+2-T+6l(i+2)(i+3)+i+3 c
l

1

2 { Zi +4 C
i
Z

4 i r i-I 2 J
+ V Ti,XY - (i+2)(i +3)(i +4) +24+ 12 LO+2)(i +3} i;'3 C

i
+

2
Z

2

__,_' r13i2 +96i+131 4(7i
2 +69i+I64}V] i+4}

360L(i+3}(i+4)(i+5} (i+3)(i+4}(i+"S) c 2+ '"

(i+l)(l-v) {i+l i 2 { Zi+3 eiz3 i(i+5) , }
Erx T xz = T;,x Z -cz}o+V Ti,x (i+2}(i+3/ 6 6(i+2)(i+3/+

2Z
1

+v4 7; { Zi+5 C
l
Z

5 i(i-l) ;+2 3

I,X U+2)(i+3)(i+4)(i+5} 120 36(i+2)(i+3}c Z

i(13i2 +96i+131) '+4}
+360(i+3)(i+4)(i+S/ Z 2+'"
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(23)

(d) Formulas for the term T (zi -T}2ci - i Z) Tj

The series solution of stress components for this typical temperature term, with j =

3,5,7, ... , are found to be

U+2)(1-v) , , _ {[zj+2 ci -
----1:xx = T

J
,{ - (j+ 2)zJ +3cr 1z} 0 + T. -- - ---

Erx J,XX j + I 2

3(j-l)(j+6) .i+l J- [j-I ,j+l]}
+ IOU + l)(j + 4) ( z vTj,yy 5(j +4)( Z 1

+ {V2
7j,xx [ - (j +07r:;H)+4) + 4~cj-'lz5 - ~O~j~(:)7j:~) ('j+ 1Z3

(j-l)(/ 126j-912) ,j+3 ] _~ 2 [ j-I _,j+1,,3

1400(j+3)(j+4)(j+6)( z + toV 7j,yy '3(J+4)( ~

(j-l)(9j+64) 'i+3~J}
35U+4)(j+6)( L 2 + .. ,

(j+2)(1-v) _{ zi+ 2 I , j-I,}
Tn = {O} +V2 T ----+-crlz3 cl+1Z +V4 y.

ElY. ~- 0 J j + I 2 2(J+ 1) 1 J

{

Zi+4 (,j-l z5 (j-,I)(j+6) '+1 3

X (j+ t)(j+ 3)(j+4) '40 + 20(j+ l)U+4( z

(j-I)(j+8) j+3}

- 40(j +3)()+4{ z 2 + ,..

(j+2)(1-v\ = {OJ. ' T {Zj+2 _~ci-L,.3 j-I [ 3U+_L ~J "i+1 }'
Erx xy JO+ J.xY j+ 1 2 - + 10 U+ 1)(j+4)+ j+4 ( z 1

2 { zi + 4 I ' 1 5 j - 1[ j + I6
+ V ~,xy -0+ 1)(j-t3)({+4) + 40('J Z 60 U+ nU+4)

2v J +1 3 j-l r l 126j-912 4(9j+64)v ] '+3 }

+ j+4 c
J

z -1400 Lu+3)(j+4)(j+6) U+3)(j+6) c
J

z 2 + .. ,

U+2)(I-v) j+2 '+1 3 '-12 i- 1 + 1} 2 { zl+3

Erx !xz = 7J,x j +1 Zl -:2 c
J

z + 2(}+1{J 0 +V 7J,x u+ l)(j +3)

~cj-l.,.4 3(j-I)(j+6) ,j+l.,.2 (j-~)(j+8) cj+3} V4T
+8 '" 20(j+I)(J+4{ '" +40(J+3)(J+4) 1+ J,x

{

zj+5 I '+36 (J-1)(J+16) +1 4
X (J+l)(J+3)(J+4)(j+Sj-240cJ Z +240(j+I)(j+4{J Z

(j-l)(/ 126j-912) j+3 2 {j-1)(3/ 22j -360)+s}
+2800(j + 3)(j + 4)(j+6{ z 8400(j + 4)(j + 5) (j + 6t 2 + ..

The superposition of the above results according to equations (12) and (13) gives the
complete solution for a thick plate. In the case of linear temperature distribution (2), the
solution given in part (b) alone represents the complete solution,
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DISCUSSION

613

(1). If the temperature distribution is linear, as given in equation (2), application of
equations (16), (17), (18) together with equations (15) gives

I-v (Z2_ C2}2{ Z z2-3c2 5z3 -11c2z
Er:x Tzz = 24 -V4To-SV4Tl+ 15 V

6
To+ 525 V

6
T1

9z4- 66c2Z2+4lc4 25zs -130c2z3+ 153c4 z }
- 5040 V

8
To- 126,000 V

8
T1 + ... . (24)

This equation checks with Sokolnikoff's result except an opposite sign for the leading
term V4 To. It reduces to Boley's beam solution [11 when appropriate simplification is made.

(2). Under appropriate conditions, for example take the linear temperature distribution,

if we substitute d 2¢ d 2 l/J
v = 0, dx2 = To, dx2 = T1,

and consider that all quantities are independent of y, then equations (15) reduce to Boley's
beam solution, as appeared in Tables 10.2 and 10.3 of Ref. [1]. Similarly for the case of

T = z2T2(x)+z3T3(x)

then the superposition of equations (15) and (27) reduces to Boley's results, Table 10.1 of
Ref. [1]. Notice that equations (27) appear in the next item of discussion.

(3). To illustrate the use of the formulas given in parts (c) and (d), let the temperature
distribution 2 3

T(x,Y,Z) = To+zT1+z T2+z T3· (25)

Then the terms in equation (12) have the values

c2

NT = To+)T2

M T = T1+~c2T3

TH = (Z2 - C
3

2
) T2+(Z3 -~c2z)T3 (26)

and the stress components due to the part T = TH become

l~vTxx = {1;( _Z2 +c;) + 13( _Z3 +~C2Z)L+ {1;,xx(:; - c:z
2
+ l~O c4)

+VT2,yy( _~~4} +T3'XX(~~ - C;~3 +7~OC4Z) +VT3,yy( -1~5c4Z)} 1
+ {V2

T2,xx( - 3z:0+ C~~4 + 3~Oc4Z2-1;1{6)

V2T (C
4
Z
2

11 6) V2T ( Z7 1 2 5 19 4 3+ V 2,yy 45 - 945 C + 3,xx - 840+200c z - 4200 C z

61 6) 2 (1 43 13 6)}+63,000c z + vV T3 ,yy 525 c z -7875 c z 2 + ...
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In the above equations the rigid-body displacements are ignored and Pis a constant which
is related to stresses of the term { h.

(4). When the present theory is used to solve a particular problem the edge conditions
may be handled in the same manner as in classical thin plate theory. Integration of equa
tions (8) will give the functions cfJ(x, y) and ljJ(x, y) involving arbitrary constants. These
functions are then substituted into equations (15) or (19) so as to satisfy the prescribed edge
conditions. Naturally the solution of parts (c) and (d) should be superimposed to part (b)
in the calculation of edge boundary conditions. An observation of the order of differential
equations (8) indicates that four boundary conditions may be satisfied at each edge of the
plate.
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A6cTpaKT-)l.aeTcll TpexMepHoe peweHHe, npe,llCTaBneHHoe B pll,llaX, ,lIn1l ynpyrlfx nnacTHHOK, nO,llBeplK
eHHhlX ,lIeli:cTBHIO o6wero nonll TeMnepaTyphI. PeweHlfe y,llOBneTBoplleT ypaBHeHHlIM nonll nHHeHHoH
TepMoynpyrOCTH If rpaHH'IHoMy ycnoBlf1O 3aTyxaHHlI HanplllKeHIfH Ha nnOCKHX nOBcpxHOCTlIX, HO npH
:HOM He y,llaBneTBoplleT KpaeBbIM ycnoBHlIM. B peweHHIO npe,llCTaBneHHoMy B pll,llaX, nepBhIll: 'lneH
OKa3hIBaeTClI peweHlfeM KnaCCH'IecKOll: TeopHH TOHKIfX nnaCTHHOK, a KOppeKTlfpylOwHe 'fneHhI npe,llCTa
BnlllOT c060li: BhIcwlfe npOIf3BO,llHhIe $YHKI.\HH TeMnepaTyphI. BbIBO,llllTClI 06wHe 'lneHhI peweHHlI,
npe,llCTaBneHHoro B pll,llax ,lInli cny'lall nlfHeli:Horo pacnpe,lleneHHlI TeMnepaTyphI

T(x,y,z) = To(x,y) + zT1(x,y).


