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THERMAL STRESSES IN A FHICK PLATE{}
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Abstract—A three-dimensional series solution is obtained for elastic plates subjected to general temperature
distribution. The solution satisfies the field equations of linear thermoelasticity and the boundary condition of
vanishing stresses on the flat surfaces, but in general not the edge conditions. In the series solution the first term
represents the classical thin plate theory and the subsequent correcting terms involve successively higher derivatives
of the temperature function. General terms of the series solution are derived for the case of linear temperature
distribution T(x, y, z) = To(x, y)+zT(x, p).

INTRODUCTION

THERMAL stresses in thin plates are generally considered to be well established {1-3], on
the other hand investigations pertaining to thick plates appear to be very limited. Sokol-
nikoff [4] obtained an explicit solution for the stress component t,,, together with 7,
and 1, expressed in terms of t,, ; the other three stress components 7,,, 1,,, and 1, were
ignored in the paper. The derivation was rigorous but lengthy, and the final results were
not in a convenient form for direct application. Gatewood [5] extended the work of [4] to
include calculations of 7., t,,, 7,,, also expressed in terms of 7,,. Some applications and
numerical results were given.

In the present paper a series solution, in the same spirit of [4, 5], is obtained by a different
method of approach. The results reached for all stress components are expressed explicitly
in terms of the prescribed temperature load. The temperature distribution is assumed to be
expressible in the form

N
T(x,y,2) = ZO 2T, y). (1)
k=
The solution satisfies the field equations of linear thermoelasticity and the boundary
condition of vanishing stresses on the flat surfaces. Accommodations are provided for hand-
ling the edge conditions in each individual problem.

In the series solution the first term represents the classical thin plate theory and the
subsequent correcting terms involve successively higher derivatives of the temperature
function. General terms for the stresses are derived for the case of linear temperature
distribution

T(x, y, 2) = To(x, y)+zTi(x, y). 2)
The displacements are determined as usual from the stresses.
1 This research was supported by the National Science Foundation, Grant GK-723.
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The same type of approach was first used by Boley [6] for the thermoelastic solution of
beams. Furthermore, it can be shown that the present plate solution may be reduced, under
appropriate conditions, to the corresponding beam solution [6].

DERIVATION

The governing field equations to be satisfied by the series solution are {1, 3]

=0 (3
Vie,+ ’i‘jﬁs’” - - 1‘%{ %J_“—z(s,.jvf T+, j)
where
S =T +1,+1., (5)

The usual rules for index notation apply. The boundary conditions to be satisfied by the
solution are

z = +tc: T = T = T,y = 0. (6)

The stress components given by the classical thin plate theory are [1-3]

1 1
Tex = E(X{—(f),yy'Jr'IZ(l,l’,xx"‘Vl//,yy—'MT)‘F 1:“;(NT+ZMT'—‘ T)}

I—v
7, =0
(7)
Ty = Ea{¢axy+zl//’xy}
Eo
Tz = 1— V{ ‘—%(22 - (‘2)(V2¢’ax—' MT,X)}

with 1, and 7, to be obtained from 7, and 7., respectively, by interchanging x and y.
In equations (7) the functions ¢(x, y) and y(x, y) are determined from

Vip = V2N, V4 = VPM, 8)

and with N, and My defined by
N(x, y) : j ' Td
X, y) = = z
Xy 2] .

3 C
Mx, y) = Z’g.[ Tz dz.

A comma in equations (7) indicates partial differentiation.
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It can be readily checked that the stress components given in equations (7) do not
satisfy completely all equations (3) and (6). These expressions (7) will be taken as first
terms of the series solution, to be designated as { }, terms. The next terms { }, are derived
by assuming appropriate expressions for each stress components with unknown coefficients,
which are determined by using equations (3) and (6); in the calculation derivatives of N
and M higher than the third order are neglected. The rest of the terms are derived by
repeating the procedure, and in deriving terms { }, the derivatives of N and M higher
than the (2n+ 1)th order are neglected. It may be mentioned that the same method of
approach have been used in the earlier papers [7, 8] for isothermal case.

Once the stress components are known, the displacement components may be
determined through the relations

1
eij = E[(l + v)Tij_ Véus] +5”aT

(10)
e = 3u j+u;).

RESULTS

(a) Temperature distribution

The temperature distribution T(x, y, z) is assumed to have the form of equation (1).
Substitution of (1) into (9) results

c? ¢t
Ne=T+=T+...+—T+...(i=
T 0 3 2+ +l+17:+ (l eVCI])
(11)

3 3 .
M, = T1+§c2T3+... +j T+ ... (j = odd).

+2
The function T(x, y, z) may be rearranged as

T=Nr+zMr+Tyx, y, 2) (12)

where

N i N
RS o

with i = even and j = odd integers only. It is obvious that in the case of linear temperature
distribution (2), we have

Ty =0, Ny =T, M, =T (14)

and equation (12) is identical to equation (2).
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(b) Formulas for the part T = Np+zM;
The series solution for stress components are obtained as follows.

.1_:31-)“ = { "(1 - v)(ﬁ’}’)’ + z(‘pmx + V‘llwy_ MT)}O * {qu‘)’y}’(; i +v )

2 2 2 2

FNp] =4S+ vNp | — ot ) =V
Tex| "5 TG ™ T 14y 6 x| T

2

1—v 72 1
M h— M Loy 2
+ T”"‘( =l +10 +Y ’"”( 6 10° Z)}l

4

A
+ {VRNT,xx(E ﬁ6~A+i—8kOC ) + VVZNT')‘Y

5 2.3
z cez 194

2 R TR
VM T’”(IZO 60 4200

z} + o
2

1—v P ARG S St oz
— = {0 4 J T, M| — I
B = A }“+{0}‘+{V NT( SYRT ;.4)*V "“( 12060 120)}2

2 .
VMl 6730 " 700

I—v vi—v 1= 1—v

Ex ™
+ V3 e +M Z3+L:3 2z
i DT e AT I
2=y, 2—v 144
2 4 2.2 4
‘L{V Nm( 24712 360 ¢ )
2—v 2—v 54— 19y
ZM R S S 42
v T"‘y(IZOZ 60 <7 " a00 € )}f
1—v ., N 5 2 o’z
'“E'&'Ixz - {(V ‘psx“MT,x)( ) + 3 0+ v N’T.x 6 6
4 4 5 2.3
. [2_C2 L N, | L T e
v M"-"(z4 20 “*"120)} +{V N’“”‘( 60" 18 180¢ Z)
% 2zt 9 11
& i T 4 2 P -
v MT"‘( 3607120 1400 © T12600° )} -

In the above equations ¢ and  are determined from equations (8) subjected to prescribed

edge conditions.
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The general terms { }, for the stress components have the form
1- . ; -
et VT NN s+ Vb7 )72
m=0
+ VZ(n - 1)(dmnMT,xx 4 Vem"MT,yy)szZZ"_ 2m+1 }"
1 v c -m n, n—4im
E—a‘[zz: z {V2n(fmnNT)sz22(" )+V2 (gmnMT)C2m22 Im* 1}11
m=0
1—v

Ea m=0
n+1
} . (16)

1__ n+1
E(Zv Txz+ { Z Vzn(jmnNT,x)czmzzn— md + Z Vzn(kmnMT,x)cz'nZZ("_m+ b
m=0

m=0

,[xy: Z {VZ(n-— 1)‘(hmnNT,xy)c2m22(n—M) + V2(n— 1)(imnMT,xy)czm22"_ 2m+1 }"

The following formulas give the numerical coefficients for the (n+ 1)th term as functions
of the corresponding coefficients of the nth term. The first group of formulas hold for

m=20,1,...,n:
a —_ _ 1 a amn+men+fmn
me ) T n—m+1)@2n-2m+ 1) ™ 1+v
b — bmn
metD T dan—m+1)2n—2m+1)
jmn

Jrore 1) = =30 D)

1

[ amn+vbm+fm}
mn 1+v

h =
mrt D) 2An—m+1)2n—2m+1)
j _ _ am(n+l)
mn+ 1) 2n—2m+3
(17)
d —_ 1 dmn+vemn+gmn
min+ 1) An—m+1)2n=2m+3)| ™ 1+v
e — _ emn
mint 1) 2n—m+1)(2n—2m+3)
— kmn
mnt ) = T om+ 3
i = - 1 i dmn+vemn+gmn
mrt D An—m+1)(2n—=2m+3)| ™ T+v

k - _ dm(n+1)
D T An—m+2)
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Form =n+1and m = n+2, the following formulas must be used :

f(nﬂ“l)(n‘*i) = - ? fm(n+1)
m=0

Jon+ n+1y = — Z Imin+ 1)
m=0

p+tyn+1y = "f(nﬂ)(nﬂ;

b(n+ D+ 1) = .f(n+ 1)(n+ 1)”j(n+ 1}n+1)

h(n+1)(n+l) = “.f(n+1)(n+1_)‘Vb(n+1)(n+1)
L3
g(n+l)(n+1) = - Z Emin+ 1) (18)
m=0
n—m+2)

k(n+l)(n+l) - min+ 1}

m=0 2n—2m+5

n+

k(n+2)(n+n = - Z km(n+1)
m=0

d(n+1)(n+l) = _zk(n+1)(n+l}

€t in+ 1) = B+ Lu+ 1)“2k(n+1)(n+n

lnt n+1y = _Ve(n+1)(n+1)_2k(n+1)(n+])'

The series solution for displacement components are found as follows:

1—
Miffux = (1= ) {(L+v)(¢,, + 20, )+ P(x. W)Yo

22 CZ
)*N”( it

NV L e canlven, [T 20 ey :
{6+ 0 <7, i I P T

2oV 2V 3:32%42)} v
2

+(1+v){1 [ 2| —

C7Z

vem, |22
* T”‘( 120 60 4200

I=v

e = = (1=v*Wrlg {{1wxf)z(vV2¢+zV7~}+(l+v) [Vzt,!/( - ; +c )

2 -y EES
M| === 2 1 V2 o
+ T(Z 10 c)jl}ﬂ—( +v){v NT(6 6)
2 v _ﬁjﬂ 2,2 16“"191 4
+V M7(24z 50 2 +—-—4200 ¢ 2+

The formula for u, may be obtained from u, by interchanging x and y, except that the
function P(x, y) in terms { }, is changed to Q(x, y). P and Q are the real and imaginary
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parts of an analytic function of complex variable,

f(2) = P+iQ 20
with z = x+iy, and
oP Qg R
g—awar Ve (21)

(c) Formulas for the term T = [z'—(c'/i+ I)|T;

The series solution of stress components for this typical temperature term, with
i=2,4,6,...,are found to be

(i+1)1-v

i+2 2 ”
A rxx=T.»{—(i+1)z"+c"}o+{7:-,m[z -

i+2 2 Tei+20+3)

PR DRI YRY | Gy B D A L
B 3(i4-3) . PG4 (i +3)i+4) 24
ii—1) i i(13i% +96i +131) s

12(+2)(i+3) 360(i + 3)(i+ 4 (i +5)

(77 +69i+164) .,
56+3)0+90+5° |,

: 1— it+2 iy2 ; .
g17-1—_1’)'(—‘“—1})Tzz = {0}0+V27:{_L+£i~ : Cl+2}l

i

v s
+—V2T«' o %22
6 '*”[i+3‘" :

Eo i+2 2 2i+2
i+ 4 i 4 e 5) X
R O 5 B
‘{(i+2)(i+3)(i+4) 24 T aey” ¢

G+,
*mc 4}2"}'...

(+D(1—v) 22 gt i+5 v ] .
— Ty, = 0 +7;_x - i+2
Ex 7 O+ Tixy T2 2 Teliraary ivslC |

i+d i 4 '_1 21, .

R IR AR N b SR 3} PSSP

"{ (1) +d 28 T12lv0+3) i+3)¢ °
___i_[13i2+96:'+131 AT 469+ 160V L,
0L r3+H+3) GF)rdaes) < (2T

i+3 i3 e

o= T {2t =iz} + V2T, {__ z ¢z’ ii+5) it2,

S Jo TG0+ 6 eira+d) it

Zi*s _c‘z5 {i—1)
(+)(+ )+ D[+5 120 36G+2i+3)°
i(13i% +96i+131) M}
2t

i+ D(1—v)
Ex !

i+2,3

+V“1:,x{

3606+ 3+ 415" 22)
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J

(d) Formulas for the term T = |z/ —:j«cj LT
Jj+2

The series solution of stress components for this typical temperature term, with j =
3,5,7,..., are found to be

(J+20 —V) Zit2 i t,3
TRy e T T{—(j+2z/+3ci" 12}0—{-{ ”"‘[Tﬁ_ 5
3-D3G+6) ., i—-1
B e LY L) — gt
0G+ NG+ © Vi sG+4° 7!
Zr t G=D(+16)
+{V3T, < |- - EEPNES BT JTI0) er
{ " [ (j+1)(1+3)(j+4)+40c TG nG+a¢ T
_(j—l)(j2_126j—912) T -1 o1,
14000+ 3)(j+ H(j+6)° 10 3G +4°
_U=DOi+69) .
T35+ 4+ 6) z| (2

(j+2)(1—=») ( 2 AR -1 -1,
. A VT e T3 L it V4T,
Ex % = 10 i+t 2( 2(j+1)c g !

{ Zj+4 ‘J"'lzs (jﬂ’l)(j+6) Cj+i N
(

JADG+)GHY 40 200+ D+ (23)

U=DU+8) .,
—w--40(1+3)(j+4 c? z}2+

(j+2)(1—v) AR j—11 3(j+6) 3
B R LR e e T TR TR T ctigh,

j+1 F+Dj+4)  j+
zit4 I j=1 j+16
F VAT e ey i 125 :
"‘{ G+DG+3)j+4 40 60 [(i+1)(.}'+4)
L2 e L[ Po126)-912  a@irean ] )
j4+4 1400 [(j+3)(j+H+6) (j+3)(i+6) §°
(+2)1—v) J+2 00 3 -1 } { zi*?
— T, =T j+1 s i T 1 "/ Y (P
Fo == e I E 0 T30 Er g (oY L TGy
L. 3-Dj+6) U-Hiu+8
P ES PO gtz M o3 L+ VAT,
Tg¢ 0+ DG+4)°¢ D +3)G+4)" Tix
{ Zre | i3 6 (]"1)(]"*'162*(_\,‘“24
(j+l)(j+3)(j+4)(j+5) 240 2900+ 1)(j+4)

(=D —126-91) ., (= DEF-225-360) . f}
28000 +3)(j + 4 (j+6) 8400 +4)(j+5)(i+6)  |*
The superposition of the above results according to equations (12} and (13) gives the

complete solution for a thick plate. In the case of linear temperature distribution (2), the
solution given in part (b) alone represents the complete solution.
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DISCUSSION

(1). If the temperature distribution is linear, as given in equation (2), application of
equations (16), (17), (18) together with equations (15) gives

1—y (22 _CZ)ZJ . z z2—3¢? 523 —11¢%z
— _ T, —‘—V4T V6T VGT
P T B TR 1
4 _fp2.2 4 5_130¢%z3 +153¢*
9766z + Al gy 257713072 193¢z 0y } (24)

5040 ° 126,000

This equation checks with Sokolnikoff’s result except an opposite sign for the leading
term V*T,,. It reduces to Boley’s beam solution [1] when appropriate simplification is made.
(2). Under appropriate conditions, for example take the linear temperature distribution,
if we substitute a2 42y
v=0 e =T =T
and consider that all quantities are independent of y, then equations (15) reduce to Boley’s
beam solution, as appeared in Tables 10.2 and 10.3 of Ref. [1]. Similarly for the case of

T= 2Tyx) + 2 T(x)

then the superposition of equations (15) and (27) reduces to Boley’s results, Table 10.1 of
Ref. [1]. Notice that equations (27) appear in the next item of discussion.
(3). To illustrate the use of the formulas given in parts (c) and (d), let the temperature
tributi
distribution T(x, y,2) = Ty+2T, + 22T, + 2T, (25)
Then the terms in equation (12) have the values

2

Ny = To+%Tz

My = T, +3c*T,

2
T, = |25
H (Z 3

L+(2*—3c*2)T, (26)

and the stress components due to the part T = T, become
1—vy c? 3 ¢ 22 7
e =il -2 3,02 s A
Ea { 2|~z +3)+T3( 45 z)}o-#{Tz,xx(lz 6 +1806)
2c* LA | 2
Ll =)+ Gt et —*
’ 2'”( 45)+ 3""‘(20 10 "700° Z)”TW( 175¢ Z)},

AR o B | 5
+ V3T, x SR > S 6
{ * ( ¢z 1512C )

3600 72 360
c*z2?2 11
45 945

z7 1
840 7200

19

2,5 4,3

+W2T, —
2'”( CF " 400¢ ¢

c6) +V2T3,,x(

61 o\, ey [ Loas 13 4
+63,OOOC Z)+VV T3»W(5-2—56 z ‘—ﬁc z 2+
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In the above equations again { }, represents the classical thin plate theory and the re-
maining terms are corrections.

The displacement components corresponding to the stresses of equations (27) are
obtained as follows.

1—vu 2 2? 7 +8 2« 2,3
R 2 ez 7 T .
‘0}°+{B’*{;2 6 180 | B0

27+8v , 5 22 Pzt 18y 25— 88y
g T P T 4,2 ‘,
700 ¢ Z]}, +{V 2"[ 3607 72 T 360 7T 7560 ¢

27 22 1948y 61+ 104y
2 A AT e
v 3”‘{ 840 7200 ~ @300 < © w3000 (., T

1—vu, 2z & 3, 43-8v,
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5 2.3 6 2,4
ap |2 :i_}i:?_.u} zT[wz__ 2t 358y
‘*{V TZ[ eotis 1m0 TV B Tt a0 a0 CF

269—104v 4 27 2 7 8v ey 63—88v
209 194 y N A o oz
763,000 C]}l “L{V 2[2520 360 1080 C 7 T 7560 €
8

4 ¢*z° 27'-8v gt 165— 104y 652
+ B ... (28
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In the above equations the rigid-body displacements are ignored and f is a constant which
is related to stresses of the term { } ;.

(4). When the present theory is used to solve a particular problem the edge conditions
may be handled in the same manner as in classical thin plate theory. Integration of equa-
tions (8) will give the functions ¢(x, y) and (x, y) involving arbitrary constants. These
functions are then substituted into equations (15) or (19) so as to satisfy the prescribed edge
conditions. Naturally the solution of parts (c) and (d) should be superimposed to part (b)
in the calculation of edge boundary conditions. An observation of the order of differential
equations (8) indicates that four boundary conditions may be satisfied at each edge of the
plate.
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AbcTpaxt—/laeTca TpexMepHOS peuleHye, NPEACTABICHHOE B PANAX, IS YUPYIUX IUIACTHHOK, IOABEPXK-
eHHBIX [ielicTBHIO oOwero nons Temnepatypbl. PelueHne ymoBneTBOPAET YPaBHEHMSM IO/ NHHEHHOM
TEPMOYNPYFOCTH ¥ TPAHMYHOMY YCIOBHIO 3aTyXAHMUSI HANPAXEHMH Ha IUIOCKMX NOBEPXHOCTAX, HO MU
3TOM He Y[ABIETBOPSECT KPAaeBbiM YCIOBHAM. B peileHMIO NMPeACTaBIEHHOMY B PSAAaX, NMEPBBIL wWieH
OKa3bIBAETCS PEIUCHHEM KJIACCHYECKOH TEOPHH TOHKHX IUIACTMHOK, 3 KOPPEKTUPYIOIIME YieHbl IIPeacTa-
BistOT coGolt BBICLUME NPOM3BOAHBIE GYHKUMM Temmepartypbl. BbiBogAtcs ofime WieHs! pelueHus,
NPEACTaBIEHHOIO B PsAaX Mls Cllyyas JHHEHHOro paclpeleneHUs TEMIEPATYPb

T(x,y,2) = To(x,p) + 2T (x,y).



